NMR analysis of a novel enzymatically active unlinked dengue NS2B-NS3 protease complex.
نویسندگان
چکیده
The dengue virus (DENV) is a mosquito-borne pathogen responsible for an estimated 100 million human infections annually. The viral genome encodes a two-component trypsin-like protease that contains the cofactor region from the nonstructural protein NS2B and the protease domain from NS3 (NS3pro). The NS2B-NS3pro complex plays a crucial role in viral maturation and has been identified as a potential drug target. Using a DENV protease construct containing NS2B covalently linked to NS3pro via a Gly4-Ser-Gly4 linker ("linked protease"), previous x-ray crystal structures show that the C-terminal fragment of NS2B is remote from NS3pro and exists in an open state in the absence of an inhibitor; however, in the presence of an inhibitor, NS2B complexes with NS3pro to form a closed state. This linked enzyme produced NMR spectra with severe signal overlap and line broadening. To obtain a protease construct with a resolved NMR spectrum, we expressed and purified an unlinked protease complex containing a 50-residue segment of the NS2B cofactor region and NS3pro without the glycine linker using a coexpression system. This unlinked protease complex was catalytically active at neutral pH in the absence of glycerol and produced dispersed cross-peaks in a (1)H-(15)N heteronuclear single quantum correlation spectrum that enabled us to conduct backbone assignments using conventional techniques. In addition, titration with an active-site peptide aldehyde inhibitor and paramagnetic relaxation enhancement studies demonstrated that the unlinked DENV protease exists predominantly in a closed conformation in solution. This protease complex can serve as a useful tool for drug discovery against DENV.
منابع مشابه
In vitro determination of dengue virus type 2 NS2B-NS3 protease activity with fluorescent peptide substrates.
The NS2B-NS3(pro) polyprotein segment from the dengue virus serotype 2 strain 16681 was purified from overexpressing E. coli by metal chelate affinity chromatography and gel filtration. Enzymatic activity of the refolded NS2B-NS3(pro) protease complex was determined in vitro with dansyl-labeled peptide substrates, based upon native dengue virus type 2 cleavage sites. The 12mer substrate peptide...
متن کاملNMR Analysis of the Dynamic Exchange of the NS2B Cofactor between Open and Closed Conformations of the West Nile Virus NS2B-NS3 Protease
BACKGROUND The two-component NS2B-NS3 proteases of West Nile and dengue viruses are essential for viral replication and established targets for drug development. In all crystal structures of the proteases to date, the NS2B cofactor is located far from the substrate binding site (open conformation) in the absence of inhibitor and lining the substrate binding site (closed conformation) in the pre...
متن کاملNovel dengue virus-specific NS2B/NS3 protease inhibitor, BP2109, discovered by a high-throughput screening assay.
Dengue virus (DENV) causes disease globally, with an estimated 25 to 100 million new infections per year. At present, no effective vaccine is available, and treatment is supportive. In this study, we identified BP2109, a potent and selective small-molecule inhibitor of the DENV NS2B/NS3 protease, by a high-throughput screening assay using a recombinant protease complex consisting of the central...
متن کاملIn vitro evaluation of novel inhibitors against the NS2B-NS3 protease of dengue fever virus type 4.
The discovery of potent therapeutic compounds against dengue virus is urgently needed. The NS2B-NS3 protease (NS2B-NS3pro) of dengue fever virus carries out all enzymatic activities needed for polyprotein processing and is considered to be amenable to antiviral inhibition by analogy. Virtual screening of 300,000 compounds using Autodock 3 on the GVSS platform was conducted to identify novel inh...
متن کاملDesigning cyclic peptide inhibitor of dengue virus NS3-NS2B protease by using molecular docking approach
Peptides are preferred for designing inhibitors because of their high activity and specificity. Seven cyclopentapeptide inhibitors were designed in this study against dengue virus type 2 (DEN-2) NS3-NS2B protease: CKRRC, CGRRC, CRGRC, CRTRC, CTRRC, CKRKC and CRRKC. Docking analysis was performed to study the enzyme-inhibitor binding interactions. The free energy binding and estimated Ki values ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 288 18 شماره
صفحات -
تاریخ انتشار 2013